Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

Liping Wanga, Clemens Meyerab, Edouard Guiberta, Alexandra Homsaya,
and Harry J. Whitlowac

a University of Applied Sciences of Western Switzerland (HES_SO), Haute Ecole Arc Ingénierie, Eplatures-Grise 17, 2300 La Chaux-de-Fonds, Switzerland.

b Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

c Louisiana Accelerator Center, Department of Physics, University of Louisiana at Lafayette, Lafayette LA, 70504, Louisiana, USA

Abstract

Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes.

In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars
of few µm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-µm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

Key words: proton beam writing; microfabrication; porous membranes; release coating; soft lithography

Corresponding author: wanglp.amy@gmail.com
1. Introduction

The use of self-supporting porous membranes as filters for the separation and cultivation of biological species, blood filtration, and control of drug delivery systems has achieved great success [1][2][3]. The flow of liquid phase through a pore-channel is governed through the Navier-Stokes equation by the shape, size, and cross-section of the pore. In the case of a a porous membrane used as a filter to block the transport of solid or soft-phase particles dispersed in the fluid medium, at least one cross-sectional dimension of the pore must be smaller than the minimum cross-sectional size of the particles. It follows that a membrane with a regular spatially dense array of slot-shaped pores will present a reduced hydrodynamic flow resistance for the same blocking capacity as circular pores of the same size. This requires that the size, shape, spatial density and regularity of the pores is precisely defined during the fabrication process.

Conventional fabrication techniques for porous membranes are mostly based on semiconductor technology and, therefore, are restricted by the low mechanical stability of the thin film substrates [4]. Ion track etching, which is widely used for fabricating commercial porous membranes in polycarbonate and polyethylene terephthalate, is limited to the production of randomly distributed and randomly orientated round pores, some of which overlap and do not have uniform pore sizes [4]. Laser machining of pores produces conical shaped sidewalls, and the laser spot size is limited by optical diffraction to pores larger than about 1 µm. Plasma etching to make
high-aspect ratio patterns is difficult to control and requires a complex mask deposition process.

Here we report the development of a procedure for fabricating high-transmission microporous membranes in polydimethylsiloxane (PDMS) by combining proton beam writing (PBW) and soft lithography. This takes advantages of the special capability of PBW for fabricating micro and nanostructures with straight vertical side walls, large height-to-width aspect ratios, and well controlled dimensions. These characteristics originate from the large momentum and penetration depth of MeV protons in resist materials, like SU-8 and poly(methyl methacrylate) (PMMA) [5][6]. In combination with soft lithography, PBW has been demonstrated well suitable for fabricating various micro and nanofluidic components and lab-on-chip devices for biomedical and analytical chemistry applications [7] [8].

2. Materials and methods

2.1 Processing of SU-8

SU-8, a conventional negative photoresist for micro and nanolithography, was chosen for fabricating the mold in soft lithography. The substrate was a polished 2-inch silicon wafer treated by oxygen plasma (Plasmaline 415, TEGAL, USA) to increase its surface wettability. Then an approximately 20-μm thick SU-8 (GM1060, Gersteltec Sarl, Switzerland) layer was spin-coated on the Si substrate. The SU-8 layer was then subject to PBW irradiation and chemical development by immersion
into propylene glycol monomethyl ether acetate (PGMEA, Gersteltec Sarl, Switzerland) for 2 min at room temperature, followed by a rinse with isopropanol and blow-dry with N₂.

2.2 Proton beam writing

PBW was carried out with 2 MeV protons deflected into the MeV ion microscope attached to the 1.7 MV Tandetron accelerator at Haute Ecole Arc Ingénierie, La Chaux-de-Fonds Switzerland. The lens system demagnification factors are 88 times and 15 times in horizontal and vertical directions, respectively.

Fine focusing was conducted by projecting and scanning the proton beam onto copper grids placed at the same focal plane as that of SU-8. Particle induced X-ray emission (PIXE) mapping of a corner of the grid by OMDAQ2007 was performed to verify the beam spot size, which was about 1 µm × 1 µm in the experiments. A pattern consisting of a hexagonal array of 4 µm × 8 µm holes, arranged at a center (of pillar)-to-center (of pillar) distance of 20 µm, was written by Ionscan software over a 560 µm × 560 µm scan area at a fluence of 1.9 × 10¹³ ions cm⁻², with a beam current of 1 pA. A scan-and-stitch method was adopted to fabricate a large area of pattern, which was composed of 12 individual scans over an area of 2 mm × 2.7 mm.

2.2 Anti-adhesion coating
After PBW, the sample was chemically developed without post-exposure baking to yield a mold consisting of SU-8 pillars. The SU-8 mold was then coated conformally with an approximately 100-nm thick poly-para-xylylene (Parylene)-C (Daisan Kasai CO., Japan), which was used as a release layer for PDMS demolding. Parylene-C was deposited by thermal evaporation of a solid Parylene precursor in a low pressure chemical vapor deposition (LPCVD) process [9] [10]. This allowed the coating of a smooth Parylene film conformably onto the top surface and side walls of SU-8 pillars to stiffen the mold structures and to facilitate the removal of PDMS from the mold.

2.4 Spin casting PDMS

PDMS pre-polymer (Sylgard 184 Silicone Elastomer, Dow Corning, USA) was prepared at a 10:1 base-to-curing agent weight ratio, degassed, and poured onto the SU-8 mold. Then, a spin-coating process was performed at 4800 rpm for 60 s to purge excess pre-polymer and to generate a 15-µm thick PDMS membrane, which was estimated to be thin enough to form through-holes because the SU-8 pillars were 20 µm in height. Subsequently, the sample was treated thermally on a hotplate at 50 °C for 4 h. This step was performed to accelerate the polymerization process, while the relatively low temperature minimized polymer shrinkage effects after cooling down to room temperature.

2.3 Tape-ring method for demolding
A piece of 60-µm thick polyolephin tape (Model Nunc Sealing Tapes, Thermo Scientific, USA) was cut into a ring-shape by a Nd:YAG laser (Model Mephisto Q, Coherent Lasers Inc., USA) at a wavelength of 1064 nm and pulse energy of 90 µJ. The ring has an inner diameter of 4 mm and outer diameter of 9 mm to fit both the patterned area and the diameter of microfluidic tubing, respectively, for the subsequent membrane-to-chip integration. By using a piece of glass coverslip as a support, the tape ring was transferred onto the cured PDMS and pressed firmly against the membrane surface. The PDMS beyond the periphery of the tape ring was removed by a razor blade. Subsequently, the PDMS membrane, supported by the tape ring, was carefully lifted up by loosening up the edge towards center with the aid of sharp tweezers. When the membrane was completely peeled off, another tape ring was glued to the other side of the membrane to provide extra support.

3. Results and discussion

Optical inspection and measurements were conducted on a high-magnification optical microscope (Model Axioskop, Carl Zeiss AG, Germany) equipped with a digital colour camera (Model DCF420, Leica Camera AG, Germany) in clean-room environment. Figure 1 (a) shows an optical image of the pillars written in SU-8. The size of the pillars is about 4 µm × 8.5 µm, and it is increased to 4.5 µm × 9 µm after Parylene coating, as shown in Figure 1 (b). The increase in the pillar dimensions is probably due to the underestimation of Parylene layer thickness during the coating process, or the fact that Parylene layer was not conformally coated onto the bottom of
The size of the pores in PDMS membrane are about 5.5 µm × 10 µm (Figure 1 (c)), which is slightly larger than that of the coated SU-8 pillars. The origin of this is unclear but might result from plastic flow on delamination. Thermal relaxation from cooling from the curing temperature of 50 °C is unlikely because this would result in less than 1% shrinkage and would also act to make the pores smaller.

Figure 2 (a) shows an optical image of the pattern consisting of large-scale SU-8 pillars for use as a mold. As a comparison, an optical image of the PDMS membrane containing through-holes after peeling off the mold is shown in Figure 2 (b). Figure 2 (c) shows the membrane being partially sandwiched between two tape rings, demonstrating the good mechanical stability supplied by the tape rings against rupture during demolding process. The tape ring also provided rigidity which helped maintain the thin PDMS film flat and allowed it to be readily handled using forceps (Fig. 3 (c)).

To confirm the suitability of the porous membrane for fluid transmission. A piece of membrane was vertically sectioned, and its side profile was inspected under the microscope (Figure 3 (a)). The scanning microscopy image shows the straight vertical sidewalls of holes inside PDMS, implying a straight proton trajectory inside SU-8 (Figure 3 (b)). The thickness of the membrane is about 20 µm, which is larger than the expected value estimated from literature [11]. This might be associated with capillary forces from the pillars of the mold, which can be very large in microfluidic structures, acting to enhance the PDMS film thickness compared to a flat surface.
The 20-µm thickness also corresponds to a 5:1 height-to-cross sectional width aspect ratio of PDMS holes, which is slightly larger than that generally achievable in PDMS fabrication [12]. High-magnification microscopy of the high-density pore area (Figure 3 (c)) also revealed that the majority of pores remain open at both ends after demolding; whereas a few are covered by about 1 µm-thick PDMS on top. This pore-transmission fraction can be readily improved by increasing the thickness of SU-8 layer or, alternatively, reducing the thickness of PDMS by increasing the spin-casting speed or spinning time.

A calculation of fluid flow through PDMS membranes was conducted. The results based on solution of the Navier-Stokes equation for a rectangular channel [14,15] indicate that the flow rate is about 10 times higher than that of a commercial ion track-etched membrane. This is mainly because ion track-etched membranes contain randomly distributed holes and random hole-orientations and the hole density must be low to minimise overlapping pores. For fission fragments most holes develop into a cone shape in the subsequent etching, imposing a significant hydraulic resistance to the flow. In contrast, PBW-fabricated PDMS membranes can exploit the advantages of elliptical or slotted hole shapes with parallel perpendicular pores having smooth sidewall surfaces, and precisely-defined pattern array, all of which are helpful to promote a low-resistance fluid flow in microfluidic applications.
As PBW is a serial fabrication technique, and its fabrication over large areas, e.g. a few square centimeters, is largely restricted by the slow magnetic scanning speed, this PBW-based molding strategy is well suited for prototyping microporous PDMS membranes for preliminary proof-of-concept fluidic studies. The pillar sizes of 5 µm diameter and 20 µm height in this study were empirically governed by the manufacturability of PDMS elastomer. Future attempts will be focused on exploring the full potentials of state-of-art PBW technique to fabricate well-defined arrays of pillars with nanometer-scale diameters in other polymer materials like PMMA and polytetrafluoroethylene [13].

4. Conclusions

A reliable method for fabricating high-transmission microporous PDMS membranes has been developed. The method is based on using PBW to make a mold for soft lithography. Key features of the process were (i) precisely controlled plasma treatment of Si substrate to improve the adhesion of SU-8 pillars composing the mold, (ii) spin casting-facilitated soft lithography to make the fabrication of thin PDMS layers with pores open on both ends achievable, (iii) coating a thin (i.e. 100 nm) Parylene-C layer to act as a release agent and to stiffen the pillars in the mold, and (iv) use of a laser-cut tape ring to facilitate the delamination of the membrane from the mold.
This strategy can be used for the fabrication of filters with any pore sizes and other thin layer microfluidic components with structures open on both sides for vertical integration into multi-layer fluidic devices for complex fluidic manipulation and studies.

Acknowledgements

The project was supported by the HES-SO RadioBeam Project (No.38396) and HES-SO Muchsens Project (No.40206). The dissemination of the results was financed by Swiss National Science Foundation (No. 200021_159844).

References

Figure Captions:

Figure 1. Optical images of (A) SU-8 pillars after PBW and chemical development, (B) after coating of 100-nm thick Parylene release layer, and (C) pores in PDMS after successful demolding from the SU-8 mold.
Figure 2. Optical images of (A) pattern consisting of large scale pillars in SU-8 and (B) PDMS membrane containing through-holes after peeling off the mold. (C) Image of the membrane partially sandwiched between two tape rings.

Figure 3. (A) Image of the side profile of the membrane after section. (B) High magnification image showing the thickness of the membrane of 20 µm and the straight vertical sidewalls of holes inside PDMS. (C) Image showing that the majority of pores are open on top, whereas a few are covered by about 1 µm-thick PDMS.

Figure 1. Optical images of (a) SU-8 pillars after PBW and chemical development, (b) after coating of 100-nm thick Parylene release layer, and (c) pores in PDMS after successful demolding from the SU-8 mold.
Figure 2. Optical images of (a) pattern consisting of large scale pillars in SU-8 and (b) PDMS membrane containing through-holes after peeling off the mold. (c) Image of the membrane partially sandwiched between two tape rings.
Figure 3 (a) Image of the side profile of the membrane after section. (b) High magnification image showing the thickness of the membrane of 20 µm and the
straight vertical sidewalls of holes inside PDMS. (c) Image showing that the majority of pores are open on top, whereas a few are covered by about 1 μm-thick PDMS.