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ABSTRACT
Forecasting stock market indices is challenging because stock prices are usually
nonlinear and non- stationary. COVID-19 has had a significant impact on stockmarket
volatility, which makes forecasting more challenging. Since the number of confirmed
cases significantly impacted the stock price index; hence, it has been considered a
covariate in this analysis. The primary focus of this study is to address the challenge
of forecasting volatile stock indices during Covid-19 by employing time series analysis.
In particular, the goal is to find the best method to predict future stock price indices
in relation to the number of COVID-19 infection rates. In this study, the effect of
covariates has been analyzed for three stock indices: S & P 500, Morgan Stanley Capital
International (MSCI) world stock index, and the Chicago Board Options Exchange
(CBOE) Volatility Index (VIX). Results show that parametric approaches can be good
forecasting models for the S & P 500 index and the VIX index. On the other hand, a
random walk model can be adopted to forecast the MSCI index. Moreover, among the
three randomwalk forecastingmethods for theMSCI index, the naïve method provides
the best forecasting model.

Subjects Bioinformatics, Data Science
Keywords COVID-19, Stock indices, VIX, MSCI, Random walk, Stationarity, Autocorrelation

INTRODUCTION
The world has struggled and passed through one or more pandemics almost every century.
All pandemics affect the world and make it vulnerable to all extents, including but not
limited to the health, social, and economic system. In the past 100 years or so, the world has
been affected by the pandemics such as the Spanish flu in 1918, the Asian flu in 1957, the
Hong Kong flu in 1968, and the Swine flu in 2009. World equity markets have experienced
a turbulent trade recently as investors keep watch of a deadly viral outbreak of SARS-CoV-2
(COVID-19). The virus has affected over 210 countries and territories worldwide and two
international conveyances. It has stopped the world and its economy. Massacres in the
health care system have impacted cross-border relationships by locking down countries,
further slowing the economy. Increasing fears over the continued spread of COVID-19
have led to aberrant behaviors in the stock market (see Fig. 1), broadly impacting the global
economy. The reaction to the virus spread is quite dominating as the recent fall in the oil
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Figure 1 World epidemics and global stock market performance.
Full-size DOI: 10.7717/peerjcs.1532/fig-1

price and stock composite indices around the world. Baker et al. (2020) have identified
the COVID-19 pandemic as having the most significant impact on stock market volatility
in the history of pandemics. After the shock, markets are tending to stabilize in recent
days. According to economists and financial analysts, expecting a quick recovery from this
volatile economic situation would be unrealistic. Economic and financial experts say the
world economy will have to deal with COVID-19 for many years.

The statistical analysis of the stock market index is critically important to explore the
impact of confirmed cases of COVID-19 on the overall stock price index. Dey & Das
(2022) provided an analysis of the effect of the COVID-19 outbreak on the crude oil
price. A very recent analysis revealed the volatility spillovers and co-movements among
energy-producing, extracting, and transporting corporations’ stock prices and evaluate
how the COVID-19 pandemic creates negative WTI oil prices (Corbet, Goodell & Günay,
2020). A recent study by Dey et al. (2021) showed that COVID-19 cases and deaths, their
local spread, and Google searches impact abnormal stock prices between January 2020 to
May 2020. Understanding the market performance during the onset of deadly infectious
diseases is important for many reasons.

Moreover, the COVID-19 pandemic has caused significant economic disruption, with
stock markets worldwide experiencing sharp declines and volatility. The pandemic has
created a new challenge for stock market forecasting models, as the infection rate and
associated public health measures have become critical exogenous variables affecting
market behavior. Gupta et al. (2020) used a vector autoregressive (VAR) model to examine
the impact of COVID-19 on the stock market in India. They found that the infection rate
was a significant predictor of stock market returns, with negative effects on both short-
and long-term returns. The authors suggested that incorporating the infection rate into
forecastingmodels could improve accuracy. Another recent study byMa & Yan (2022) used
a deep learning and artificial intelligence techniques to forecast the Shanghai Composite
Index during the COVID-19 pandemic. The infection rate was included as an exogenous
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variable in the model, and the authors found that it had a significant impact on stock
market returns. The authors concluded that the hybrid model outperformed traditional
models in forecasting accuracy. A similar study used a machine learning-based model to
predict the stock market index in Taiwan during the Covid-19 pandemic (Huang, Liu &
Yao, 2020). The authors included the infection rate and other exogenous variables in the
model and found that they significantly improved forecasting accuracy. They suggested
that including the infection rate in stock market forecasting models could help investors
better understand the impact of the pandemic on the market. Zaremba & Kizys (2021)
used wavelet coherence analysis to study the impact of Covid-19 on the US stock market
and found evidence of significant linkages between the two. Similarly, Chen et al. (2020)
used the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model
to analyze the volatility of the US stock market during the pandemic and found that the
volatility increased significantly.

Furthermore, several other studies have also investigated the impact of the COVID-19
pandemic on the stock market using different modeling techniques. For example, Ozer,
Demir & Cosar (2021) used daily stock prices and technical indicators data from 2015
to 2020, which includes both the pre-COVID-19 period and the COVID-19 period, to
train and test the models. The results show that both random forest (RF) and deep neural
network (DNN) models provide promising results in terms of forecasting accuracy and
that the DNN model outperforms the RF model in terms of forecasting performance
during the COVID-19 period. Similarly, another study used the ARIMA model to forecast
the Karachi Stock Exchange (KSE) index during the pandemic period and found that
the model accurately predicted the trend in the index (Hasan, Rahman & Hasan, 2021).
Alkhatib et al. (2022) employed a structural time series-based model to forecast stock prices
in the Gulf Cooperation Council (GCC) countries, such as Kuwait and Bahrain. Their
findings indicated that the model yielded accurate forecasts, with Bahrain being the most
affected country in this cohort due to the COVID-19 pandemic. They found that the
model provided accurate forecasts. Zaremba et al. (2020) have focused on understanding
the impact of COVID-19 on the US stock market volatility. None of these studies have
focused on time series analysis to forecast stock indexes. Moreover, even though several
studies have focused on a specific country’s stock index, no attempt has been made to study
world stock index, such as MSCI.

Thus, our primary focus is to employ time series analysis to predict future stock price
indices concerning COVID-19 infection rates. We believe that the number of confirmed
cases significantly impacts the stock index, and hence it will be considered a covariate in
our analysis. In this research, the effect of covariates will be analyzed for S & P 500 stock
Index data, MSCI World stock Index data, and CBOE volatility index (VIX) data. The
description and details of the data are given the Section ‘Methodology’. The data will be
divided into a training set to train our model and a validation set to validate our model to
see the model’s performance on the test set. Finally, we will provide a prediction interval
for the stock price index. The rest of the article is organized into four sections. The second
section describes the data sets used in this study, the third section discusses the methods
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Figure 2 COVID-19 weekly confirmed cases in the (A) USA and (B) twenty-three MSCI countries.
Full-size DOI: 10.7717/peerjcs.1532/fig-2

used, the fourth section checks stationarity assumptions, and we conclude with results and
discussion in the fifth section.

DATA DESCRIPTION
In this study, we have considered the weekly average of COVID-19 infection data for the
USA and 23 MSCI Countries, including Hong Kong. The number of individuals infected
from December 31, 2019, to February 12, 2021, has been included. December 31 has been
chosen because the World Health Organization has confirmed and declared COVID-19
cases on this date. However, in the USA the first COVID-19 case was reported on January
21, 2020, and in the MSCI countries, the first COVID-19 case was reported on January
15, 2020. Therefore, for the USA, we have 56 weeks of data. Among these, we have used
the first 47 weeks (January 21, 2020–December 11, 2020) data to train our model and the
last nine weeks’ data (December 12, 2020–February 12, 2021) to validate our model. The
COVID-19 confirmed cases in the USA and twenty-three MSCI countries are displayed in
Fig. 2. In this research, the following three stock indices have been considered.

S & P 500 Index:
The S & P 500 index measures the stock performance of 500 large companies listed on
stock exchanges in the United States. Many consider it one of the best representations of
the US stock market. S & P 500 weekly index data from January 21, 2020, to February 12,
2021, has been analyzed in this study. We have considered weekly indices for the first 47
weeks (January 21, 2020–December 11, 2020) to train the model and weekly indices for
the last nine weeks (December 12, 2020–February 12, 2021) to validate the trained model.
The visualization of the training dataset for S & P 500 index is provided in Fig. 3A, and
summary statistics of this dataset are presented in Table 1. It has been observed that the
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Figure 3 Weekly price index for (A) S & P 500; (B) MSCI; and (C) VIX.
Full-size DOI: 10.7717/peerjcs.1532/fig-3

Table 1 Summary statistics (sample size, minimum, first quartile, median, mean, standard deviation,
third quartile, maximum, and kurtosis) of S & P 500, VIX, andMSCI.

Data n Ymin Q1 Q2 Ȳ SD Q3 Ymax γ

S & P 500 47 2406 3035 3260 3185 309.55 3379 3683 2.94
VIX 47 13.32 23.17 28.40 30.34 12.05 32.70 74.62 6.49
MSCI 48 1651 2146 2316 2264 224.22 2407 2640 3.05

sample range (Ymax−Ymin) and interquartile range (Q3−Q1) are higher as compared to
the pre-COVID time.

MSCI world index:
The MSCI World Index is a market-cap-weighted stock market index of 1,643 stocks
from companies across 23 developed countries worldwide. The US Canada, 15 European
Countries, Australia, New Zealand, Israel, Japan, Hong Kong, and Singapore are included
in this index. The index covers approximately 85% of each country’s free float-adjusted
market capitalization. This common benchmark for global stock funds is intended to
represent a broad cross-section of global markets and is maintained by MSCI, formerly
Morgan Stanley Capital International. The Weekly MSCI index data from January 15,
2020, to February 12, 2020, has been considered for this study. The MSCI indices for the
first 48 weeks (January 15, 2020–December 11, 2020) have been considered training sets,
and the indices for the last nine weeks (December 12, 2020–February 12, 2021) have been
considered as the validation set. Like S & P 500, the visualization of the training dataset
for the MSCI world index is provided in Fig. 3B, and summary statistics of this dataset are
presented in Table 1. Similarly, as S & P 500 index, it is not surprising to observe that the
sample range and interquartile range for the MSCI index are also higher compared to the
normal time.
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CBOE volatility index (VIX):
The Chicago Board Options Exchange (CBOE) volatility index is a popular measure of the
stock market’s expectation of volatility based on S & P 500 index options. The VIX is often
referred to as the fear index or fear gauge and is calculated and disseminated on a real-time
basis by the CBOE. Portfolio managers and investors use the VIX to measure the level of
risk, fear, or stress in the market when making investment decisions. The VIX index values
move up when the market is falling. The reverse is true when the market advances. The
data from January 21, 2020, to February 12, 2021, have been included in this study. The
weekly VIX data from January 21, 2020, to December 11, 2020 (47 weeks) comprise the
training set, and from December 12, 2020, to February 12, 2021, (9 weeks) include the
validation set. Following the previous two indices, the visualization of the training dataset
for VIX is provided in Fig. 3C, and summary statistics of this dataset are presented in Table
1. Trending with the previous two indices, it has been found that the sample range and
interquartile range are higher compared to the normal time, but peaks and valleys in the
data are more fluctuated than the previous two indices.

Moreover, to compare the spread of the three datasets, we compute the coefficient of
variation (CV)

(
=

SD
Ȳ
×100%

)
. We have found that the CVs for S & P 500, VIX, andMSCI

are 9.72, 39.72, and 9.90 percent, respectively. These results indicate that VIX data has the
highest spread from its sample mean, while that of S & P 500 has the least. Additionally, the
last column of Table 1 presents the measures of kurtosis (γ ) for the three aforementioned
datasets. Kurtosis is a measure of whether or not a data distribution is heavy- or light-tailed
relative to a normal distribution. The measure of kurtosis for a normal distribution is 3.
Since the values of kurtosis are very close to 3 (2.94 and 3.05) for S & P 500 andMSCI, these
two datasets seem to be normally distributed without having many outliers or extreme
observations as compared to the normal distribution. In contrast, the kurtosis measure for
the VIX dataset is around 6.5 which indicates the data distribution is leptokurtic, which
means the data is prone to produce more outliers or extreme observations than the normal
distribution.

METHODOLOGY
Parametric forecasting methods
In the time series analysis, autoregressive moving average (ARMA) models were first
introduced by Whittle (1951) and improved later by Whittle (1963) and Whittle (1983)
to provide a parsimonious description of a stationary stochastic process in terms of two
lower-order polynomials, one for the autoregressive (AR) part and the other for themoving
average (MA) part (Hannan, 1988). But the models are also known as Box-Jenkins models
(Box & Genkins, 1970) after the names of Box and Jenkins, who popularized the models.
For a given time series, the ARMA model is one of the variants of Box-Jenkins model class
which is a potent tool for understanding and predicting the future value of that series.

If the model includes AR terms of order p and MA terms of order q then the overall
model is referred to as ARMA (p,q). Formally, the process {Yt },t=0 {,±1,±2,...} is said to
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be an ARMA(p,q) process if {Yt } is stationary and if for every t (Brockwell & Davis, 2009),

Yt =
p∑

i=1

φiYt−i+Zt +

q∑
i=1

θiZt−i (1)

where φ1,φ2,...,φp,θ1,θ2,...,θq are parameters, and Zt ,Zt−1,...,Zt−q are white noise error

terms which follow {Zt }∼WN (0,γ (h)), where γ (h)=
{
σ 2 if h= 0
0 if h 6= 0.

Equation (1) can be written in a more compact form using a backward shift operator as
follows:

Yt −
p∑

i=1

φiYt−i=Zt +

q∑
i=1

θiZt−iH⇒φ(B)Yt = θ(B)Zt , ∀t (2)

where φ and θ are the pth and qth degree autoregressive and moving average polynomials,
respectively in the above difference equations and are given by

φ(x)= 1−φ1x−φ2x2− ...−φpxp,

θ(x)= 1+θ1x+θ2x2+ ...+θqxq

and B is the backward shift or lag operator defined as
BjYt =Yt−j, j = 0,±1,±2,......

Clearly, if θ(x)≡ 1 in Eq. (2), then the process

φ(B)Yt =Zt , ∀t

is known as AR process of order p and is symbolically denoted by AR(p). Furthermore, if
φ(x)≡ 1 in Eq. (2), then the process

Yt = θ(B)Zt , ∀t

is known as MA process of order q and is denoted by MA(q).
ARMAmodels can be estimated by using the Box–Jenkins methodology, which is further

divided into three major components.

• Identification: Identifying orders p and q for ARMA (p,q)
• Estimation: Estimating model parameters φs, θs, and σ 2.
• Diagnostics: Checking for overfitting and verifying the model assumptions using
residual.

Since we wish to include covariate(s) in our analysis, we must incorporate the
independent variables in ARMA(p,q) model defined in Eq. (1). However, these models
are uncommon and are known as autoregressive–moving-average with exogenous inputs
model (ARMAX model). ARMAX model with p autoregressive terms, q moving average
terms, and r exogenous inputs terms is referred to as ARMAX(p,q,r), which contains the
AR(p), MA(q), and a linear combination of r terms of known and external time series Xt .
Thus, an ARMAX(p,q,r) is given by Brockwell & Davis (2009)

Yt =
p∑

i=1

φiYt−i+Zt +

q∑
i=1

θiZt−i+

r∑
i=1

βiXt−i (3)

where β1,β2,...,βr are the parameters of exogenous input Xt .
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Random walk forecasting methods
The theory of random walks usually raises many challenging questions primarily because
many ‘‘technical analysts’’ and ‘‘chartists’’ ask whether the random walk theory accurately
describes reality. Indeed, the random walk approach is radically different from market
analysis and starts from the premise that the stock exchanges are examples of efficient
markets. In an efficient market, at any point in time, the actual price of a stock will be a
reasonable estimate of its intrinsic value. The theory of random walk states that a series
of stock price changes have no memory- the series’ history can not be used to predict the
future meaningfully. The future path of the price level is no more predictable than the path
of a series of cumulated random numbers (Fama, 1970).

Average method
The forecasts of all future values are equal to the average (or ‘‘mean’’) of the data at hand.
If we let the existing data be denoted by Y1,Y2,...,YT , then for forecast horizon h, forecasts
for YT+h are given by

ŶT+h|T =
∑T

t=1Yt
T

= Ȳ , h∈Z. (4)

Here, h is an integer such that h≥ 1.

Naïve method
In the Naïve forecast, for any forecast horizon h, the forecast value will be the last observed
value in the series.

ŶT+h|T =YT , h∈Z. (5)

This method dominates other methods in many situations in economic and financial
time series. Since the forecast from a naïve approach is optimal when data follow a random
walk, this method is also known as the random walk forecast method.

Drift method
An alternative to the naïve method is to allow the forecasts to increase or decrease over
time, where the amount of change over time (also known as drift) is set to be the average
change in the data at hand. Thus, the forecast for horizon h is ŶT+h|T and is given by:

ŶT+h|T =YT +
h

T−1

T∑
t=2

(Yt −Yt−1)=YT +h
(
YT −Y1
T−1

)
. (6)

This method is equivalent to drawing a line between the first and last observations in
the series and extrapolating it into the future.

Tests for stationarity
It is important to check the stationarity of a series before fitting it to a model. In other
words, it needs to be determined whether the time series is constant in mean and variance.
We employ a couple of methods to check stationarity, as outlined below.
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Autocorrelation function (ACF)
The autocorrection function (ACF) test is a statistical method used to determine the
presence of autocorrelation in a time series data set. It measures the correlation between
a series and its lags, i.e., the correlation between the data points separated by a given lag
interval (Venables & Ripley, 2002). The mathematical formula for ACF is as follows:

ACF(l)=
1
n

n∑
t=1

(Yt − Ȳ )(Yt−l− Ȳ )
S2

where l is the lag interval; n is the number of observations in the time series; Yt is the value
of the time series at time t ; Ȳ is the mean of the time series; and S2 is the variance of the
time series.

The ACF test is used to determine whether a time series is stationary or not. If the
autocorrelation is zero or close to zero, the time series is stationary, and the ACF plot
will resemble white noise. However, if the autocorrelation is high, then the time series
is non-stationary, and the ACF plot will show a pattern of spikes or waves (Box, Genkins
& Reinsel, 2015; Brockwell & Davis, 2002). The ACF test is widely used in econometrics,
finance, and other fields to analyze time series data. It is a valuable tool for detecting trends,
seasonal patterns, and other types of time series behavior (Box, Genkins & Reinsel, 2015).

The Ljung–Box test
The Ljung–Box test is a standardmethod formodel selection and is often used in time series
analysis. The Ljung–Box test examines whether there is significant evidence for non-zero
correlations at given lags, with the null hypothesis of independence or stationarity in a
given time series (Harvey, 1993; Ljung & Box, 1978; Box & Pierce, 1970; Brockwell & Davis,
2002). The Ljung–Box test statistic is calculated as follows:

Q(k)= n(n+2)
∑
l

r2l
n− l

where n is the sample size, k is the number of lags to consider, rl is the ACF at lag l , and
Q(k) is the test statistic which follows chi-squared distribution with k degrees of freedom.
A low p-value (e.g., p< 0.10 or 0.05) will indicate the non-stationarity of the series.

Augmented Dickey–Fuller (ADF) test
Another common and familiar statistical method for stationarity in time series literature
is the Augmented Dickey–Fuller (ADF) test used to test for the presence of a unit root in
time series data (Banerjee et al., 1993; Said & Dickey, 1984). A unit root is a feature of a
time series that indicates the presence of a stochastic trend. The ADF test helps determine
if a time series is stationary or non-stationary. The mathematical formula for the ADF test
is as follows:

1Yt = ρYt−1+δt +εt ,

where 1Yt is the first difference of the time series data; ρ is the coefficient of the lagged
dependent variable; δt is a constant term that includes any deterministic trends in the data,
and εt is the error term. The null hypothesis of the ADF test is that the time series has a
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unit root, meaning it is non-stationary (Dickey & Fuller, 1979). The alternative hypothesis
is that the time series is stationary. The ADF test statistic is compared to a critical value
based on the significance level and the sample size. If the test statistic is less than the critical
value, the null hypothesis is rejected, and the time series is considered stationary.

The ADF test is commonly used in time series analysis to evaluate the stationarity of
a time series and to determine the order of differencing required to make the time series
stationary (Stock & Watson, 1993). If the time series is found to be non-stationary, it may
be necessary to take first differences or higher order differences to make the time series
stationary.

Kwiatkowski-Phillips–Schmidt–Shin (KPSS) test
The KPSS test (Kwiatkowski & Phillips, 1992) is a statistical method used to test for the
presence of a unit root in time series data. Unlike the ADF test, the KPSS test assumes that
the null hypothesis is stationarity and the alternative hypothesis is non-stationarity. The
mathematical formula for the KPSS test is as follows:

Yt =µt +εt

where Yt is the time series data; µt is the deterministic trend function; and εt is the error
term. The null hypothesis of the KPSS test is that the time series is stationary, and the
alternative hypothesis is that it is non-stationary. The test statistic is calculated based
on the sum of squared deviations from the estimated trend function. If the test statistic
exceeds the critical value, the null hypothesis is rejected, and the time series is considered
non-stationary. The KPSS test is commonly used in time series analysis to evaluate the
stationarity of a time series and to determine if differencing is required to make the time
series stationary.

Test for randomness
In time series analysis, it is often a matter of interest to assess whether the series is a random
walk or autocorrelated. To check this issue, we have several statistical hypothesis tests,
namely, Wald-Wolfowitz Runs test (Siegel & Castellan, 1988; Siegel, 1956) and Bartels test
(Bartels, 1982). Bartels test is typically more potent than the Runs test. Thus, we conclude
the null hypothesis of the sequence generated by a random process versus the alternative
hypothesis of the sequence generated by a process containing either persistence or frequent
changes in direction using the Bartels test.

Association analysis between prices (or indices) and COVID-19 cases
We aim to assess the feasibility of incorporating COVID-19-confirmed cases as a potential
regressor into parametric analysis. To accommodate the number of COVID-19 cases into
Box-Jenkin’s methodology for forecasting prices or indices, it is recommended to assess
the significance of the association between the number of weekly COVID-19 cases and
weekly stock prices (or indices). Here, we have tested the significance of the Pearsonian
product-moment correlation.
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Figure 4 Statinarity assumptions of S & P 500 index data.
Full-size DOI: 10.7717/peerjcs.1532/fig-4

RESULTS AND DISCUSSION
Stationarity assumptions
For S & P 500 data
For the original series, ACF is not decaying fast for different time lags, so the series is
visually non-stationary (see Fig. 4). In contrast, for the first difference of the series, ACF
decays very quickly, which is indicative of the stationarity of the differenced series. Further,
we must perform a statistical hypothesis test to substantiate the stationarity. We have
performed the quantitative tests for testing stationarity by the Ljung–Box test. For the
original series (S & P data), p-value < 2.2× 10−16; and for the first difference series,
the p-value is 0.4127. Thus, though the original series is a non-stationary series, the first
difference series is stationary by the Ljung–Box test, and these outcomes are consistent
with what we have seen from ACF plots. For the original series, the p-valu e < 0.01; for
the first difference series, the p-value is 0.01967 from the ADF test. Thus, both the original
series and the first difference series do not have unit roots. That is, both the original and
the first difference series are stationary by the ADF test. KPSS test provides the p-value of
0.0642 for the original series, and that for the first difference series is greater than 0.10. The
original series is not a trend stationary series, but the first difference series is indeed a trend
stationary series by quantitative statistical hypotheses tests. Overall, we conclude that the
original series of weekly S & P 500 stock indices are not stationary, but the first differences
considered here are stationary.

MSCI data
ACF is not decaying fast for different time lags for the original series, so the series is visually
non-stationary (see Fig. 5). For the first difference of the series, ACF decays very quickly,

Patwary and Das (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1532 11/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1532/fig-4
http://dx.doi.org/10.7717/peerj-cs.1532


Weekly MSCI Index

Time
In

de
x

0 10 20 30 40

18
00

20
00

22
00

24
00

26
00

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Weekly MSCI Index

5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

P
ar

tia
l A

C
F

Weekly MSCI Index

First Differenced Weekly MSCI Index 

Time

F
irs

t D
iff

er
en

ce
 In

de
x

10 20 30 40

−
20

0
−

10
0

0
10

0
20

0

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

First Differenced Weekly MSCI Index

5 10 15

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Lag

P
ar

tia
l A

C
F

First Differenced Weekly MSCI Index

Figure 5 Stationarity assumption of MSCI world index data.
Full-size DOI: 10.7717/peerjcs.1532/fig-5

which indicates stationarity, but we need further statistical tests to confirm stationarity.
For the original series, the Box-Ljung test provides a p-value of < 2.2×10−16; but for the
first difference series, the p-value is 0.9605. Based on the results presented here, the original
series is non-stationary, but the first difference series is stationary. For the original series,
the p-value is 0.06524; for the first difference series, the p-value is 0.02559 from the ADF
test. Thus, with the smaller nominal significance level (α= 0.05), we may conclude that
the first difference series for MSCI is stationary. Therefore, the original series seems to
have unit roots, but the first difference series does not. For the original series, the p-value
is 0.03821; for the first difference series, the p-value i s> 0.1 from the KPSS test. The
difference series seems trend stationary, but the original series was not. Overall, we may
conclude that the original series of MSCI stock indices considered here is not stationary,
but the first difference of the series is found to be stationary.

VIX data
ACF is not decaying for different time lags for the original series, so the series is visually
non-stationary (see Fig. 6). In contrast, for the first difference of the series, ACF decays
relatively faster, which is indicative of stationarity. Further, we must perform a statistical
hypothesis test to substantiate the stationarity. For the original series, the p-value is
7.737×10−16; for the first difference series, the p-value is 0.1808 from the Box-Ljung test.
Consequently, though the original series is non-stationary, the first difference series is
stationary. For the original series, the p-value is less than 0.01; for the first difference series,
the p-value is 0.02095 from the ADF test. Hence, both the original and the first difference
series are likely to be stationary. Again, p-values are more significant than 0.01 from the
KPSS test for the original and first difference series. Both series are trend stationary. Overall,
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Figure 6 Stationarity assumption of VIX data.
Full-size DOI: 10.7717/peerjcs.1532/fig-6

we may conclude that the original series of the VIX index seems to be trend stationary, but
the first difference of the series is undoubtedly stationary.

Randomness assumption
S & P 500 data
For the original series, the p-value is 1.949×10−10 indicating that the original series is not
a random walk. Likewise, for the first difference series, the p-value is 0.09555, meaning that
the first difference series is also not a random walk if the nominal significance level is 0.10.
Thus, in this research, we can employ Box-Jenkin’s methodology for the prediction of S &
P 500 stock indices using the first difference series.

MSCI data
For the original series, the p-value is 8.692 ×10−10 indicating that the original series is not
a random walk. In contrast, for the first difference series, the p-value of 0.4891 leaves the
trace that the first difference series is a random walk.

VIX data
For the original series, the p-value is 5.915×10−09 indicates that the original series is not a
random walk. Similarly, for the first difference series, the p-value of 0.04727 demonstrates
that the first difference series is also not a random walk at a nominal significance level of
0.05.

However, when a time series is non-stationary, the general practice is to make the series
difference stationary. Moreover, if the difference stationary series is not autocorrelated, the
original series is a random walk. If so, any parametric time series modeling should be used
for forecast purposes. In our preliminary analysis, we have found that the first difference

Patwary and Das (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1532 13/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1532/fig-6
http://dx.doi.org/10.7717/peerj-cs.1532


series of S & P and VIX are stationary and autocorrelated (not random walk). Still, the
first difference series of MSCI is a stationary but random walk. Thus, we may employ a
parametric method for price or index forecasting for the first difference between S & P 500
series and VIX, which is Box-Jenkin’s methodology. On the other hand, we may deploy
random walk forecasting methods for MSCI index forecasting.

Association analysis
S & P 500 weekly indices and weekly COVID-19 cases
Here, we have considered weekly data for both S & P 500 index and COVID-19 cases in the
USA. The Pearsonian product-moment correlation between S & P 500 weekly index and
Weekly COVID-19 cases in the USA is 0.5500 with a p-value of 6.204 10−05. Therefore,
the number of confirmed COVID-19 cases is significantly correlated with S & P 500 stock
indices.

Weekly VIX and weekly COVID-19 cases
Here, we have considered weekly data for VIX and COVID-19 cases in the USA. The
Pearsonian product-moment correlation between VIX and Weekly COVID-19 cases in the
USA is−0.2487 with a p-value of 0.09184. Therefore, the number of confirmed COVID-19
cases significantly correlates with VIX at a nominal significance level of 0.10.

Forecast using Box-Jenkin’s method
In forecasting prices or indices using Box-Jenkin’s methodology for stationary time series
or difference stationary time series, it is desirable to develop an appropriate order of
autoregressive (AR) and moving average (MA) terms. In this research, we select the orders
of AR and MA using the cross-validation method. This is one of the most useful statistical
and machine learning methods in order selection.

We consider Akaike Information Criterion (AIC) (Akaike, 1974) as our model selection
criterion, which is calculated by AIC = -2 log L + 2p, where L is the maximum value of
the likelihood function of the model, and p is the number of estimated parameters in the
model. The AIC value is calculated based on the number of parameters used in the model
and the log-likelihood function, which measures how well the model fits the data. A lower
AIC value indicates a better fit of the model to the data.

We select the order of AR and MA that provide the model with the smallest AIC value.
For each of the data, we present the order and AIC (see Table 2) and ACF plot (see Fig. 7) of
residual of final models for S & P 500 and VIX. Detail guidelines for model selection can be
found in Hyndman & Khandakar (2008) and Wang, Smith & Hyndman (2006). Estimates
of the corresponding model parameters and their test of significance have been presented
in Table 3. The AR and MA parameters are highly significant for S & P 500 and VIX data,
whereas the parameter for COVID-19 infection rate is somewhat significant for both the
data.

S & P 500 index data
In this study, we have considered the weekly number of COVID-19 confirmed cases as
a regressor and weekly S & P 500 indices from December 12, 2020, to February 12, 2021
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Table 2 Order of ARIMA and AIC values of optimummodels.

Data ARIMA order AIC

S & P 500 (1, 1, 0) 557.01
VIX (2, 0, 1) 300.49
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Figure 7 (A) ACF plot of residuals from optimummodel for S & P 500 index; (B) ACF plot of residuals
from optimummodel for VIX.

Full-size DOI: 10.7717/peerjcs.1532/fig-7

Table 3 Estimates of model parameters along with standard error (SE) and test of significance of
model parameters.

Data Model Estimates SE p-value

S & P 500 ARIMA(1, 1, 0) φ̂1= 0.324 0.138 0.019
β̂1= 0.125 0.068 0.066

VIX ARIMA (2, 0, 1) φ̂1= 1.246 0.130 <0.000
φ̂2 = -0.435 0.136 0.001
θ̂1= 32.316 7.116 <0.000
β̂1= 0.103 .061 0.091

(9 weeks) for forecasting using our optimum trained model. Forecast indices and 80%,
95%, and 99% Prediction intervals are presented in the following table (see Table 4). The
visualization of these results has been presented in Fig. 8.

VIX data
Similar to S & P 500, we have considered the weekly number of COVID-19 confirmed cases
as a predictor variable and weekly VIX data from December 12, 2020, to February 12, 2021
(9 weeks) for forecasting using our optimum trained model. Forecast indices, along with
80%, 95%, and 99% prediction intervals, are presented in the following table (see Table 5).
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Table 4 Forecast for S & P 500 indices along with 80%, 95%, and 99% prediction intervals (PIs) from
the ARIMAXmethod.

Horizon Forecast 80% PI 95% PI 99% PI

48 3681.536 (3555.140, 3807.932) (3488.230, 3874.842) (3427.489, 3935.583)
49 3649.608 (3439.857, 3859.359) (3328.822, 3970.394) (3228.024, 4071.192)
50 3656.062 (3379.217, 3932.906) (3232.665, 4079.458) (3099.624, 4212.499)
51 3727.503 (3394.535, 4060.470) (3218.273, 4236.732) (3058.262, 4396.743)
52 3704.052 (3322.462, 4085.642) (3120.461, 4287.644) (2937.083, 4471.022)
53 3610.386 (3185.505, 4035.267) (2960.586, 4260.186) (2756.404, 4464.368)
54 3563.579 (3099.368, 4027.790) (2853.629, 4273.529) (2630.546, 4496.611)
55 3510.924 (3010.446, 4011.402) (2745.509, 4276.339) (2504.999, 4516.850)
56 3459.464 (2925.170, 3993.758) (2642.332, 4276.596) (2385.571, 4533.357)
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Figure 8 Train series, test series, and forecast for S & P 500 index along with 80% (inner most), 95%
(middle), and 99% (outer most) prediction bands.

Full-size DOI: 10.7717/peerjcs.1532/fig-8

These results have been displayed in Fig. 9 along with the original series. Since VIX is an
index and it cannot take a negative value. To address this issue, we fit the model on natural
logarithm-transformed data and, later on, exponentiated the results to bring them back to
their original scale.

MSCI data
Like S & P 500 Index, we have considered the weekly MSCI Index fromDecember 12, 2020,
to February 12, 2021 (9 weeks) for forecasting using our train model. Here, forecasts have
been made using three different random walk forecasting methods: the mean method, the
naïve method, and the drift method, as described in the fourth section. Forecast of the
index along with 80%, 95%, and 99% Prediction intervals are presented in the following
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Table 5 Forecast for VIX along with 80%, 95%, and 99% prediction intervals (PIs) from ARIMAX
method.

Horizon Forecast 80% PI 95% PI 99% PI

48 22.741 (15.752, 29.731) (12.051, 33.432) (8.692, 36.791)
49 23.642 (12.472, 34.812) (6.559, 40.725) (1.191, 46.093)
50 23.092 (9.456, 36.727) (2.238, 43.945) (0.013, 50.498)
51 20.565 (5.685, 35.445) (0.111, 43.322) (0.000, 50.473)
52 20.833 (5.418, 36.248) (0.064, 44.408) (0.000, 51.815)
53 23.233 (7.629, 38.837) (0.532, 47.098) (0.000, 54.596)
54 24.374 (8.718, 40.030) (0.431, 48.318) (0.001, 55.841)
55 25.769 (10.105, 41.434) (1.812, 49.727) (0.003, 57.255)
56 27.192 (11.527, 42.857) (3.234, 51.150) (0.014, 58.678)
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Figure 9 Train series, test series, and forecast for VIX along with 80% (innermost), 95% (middle), and
99% (outermost) prediction bands.

Full-size DOI: 10.7717/peerjcs.1532/fig-9

tables (see Tables 6, 7, and 8) for the aforementioned methods. These results have been
shown schematically in Fig. 10, along with the original series.

From the accuracy measures (Hyndman & Athanasopoulos, 2018; Hyndman & Koehler,
2006; Armstrong, 1978) presented in Table 9, it can be concluded that the best method for
MSCI data forecasting, based on the RMSE and MPAE, is the drift method, which suggests
that the trend is more important than the seasonality in this series.

CONCLUDING REMARKS
Forecasting methodologies and modeling are always challenging due to strict assumptions
behind the time series forecasting methods. Even assumptions are intrinsically strict
for applying any parametric methods of forecasting. In this research, we have started
with three different worldwide stock or stock-related indices, namely, S & P, MSCI,
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Table 6 Forecast for MSCI world indices along with 80%, 95%, and 99% prediction intervals (PIs)
from the meanmethod.

Horizon Forecast 80% PI 95% PI 99% PI

49 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
50 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
51 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
52 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
53 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
54 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
55 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
56 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279, 2872.59)
57 2264.435 (1969.974, 2558.895) (1808.698, 2720.172) (1656.279 2872.59)

Table 7 Forecast for MSCI world indices along with 80%, 95%, and 99% prediction intervals (PIs)
from the naïve method.

Horizon Forecast 80% PI 95% PI 99% PI

49 2621.89 (2502.025, 2741.755) (2438.572, 2805.208) (2380.969, 2862.811)
50 2621.89 (2452.375, 2791.405) (2362.639, 2881.141) (2281.176, 2962.604)
51 2621.89 (2414.277, 2829.503) (2304.373, 2939.407) (2204.602, 3039.178)
52 2621.89 (2382.159, 2861.621) (2255.253, 2988.527) (2140.048, 3103.732)
53 2621.89 (2353.863, 2889.917) (2211.978, 3031.802) (2083.174, 3160.606)
54 2621.89 (2328.281, 2915.499) (2172.854, 3070.926) (2031.756, 3212.024)
55 2621.89 (2304.756, 2939.024) (2136.875, 3106.905) (1984.473, 3259.307)
56 2621.89 (2282.859, 2960.921) (2103.388, 3140.392) (1940.462, 3303.318)
57 2621.89 (2262.294, 2981.486) (2071.935, 3171.845) (1899.127, 3344.653)

Table 8 Forecast for MSCI world indices along with 80%, 95%, and 99% prediction intervals (PIs)
from the drift method.

Horizon Forecast 80% PI 95% PI 99% PI

49 2626.281 (2505.253, 2747.309) (2441.185, 2811.377) (2383.024, 2869.538)
50 2630.672 (2457.702, 2803.642) (2366.137, 2895.207) (2283.014, 2978.330)
51 2635.063 (2421.023, 2849.103) (2307.718, 2962.409) (2204.858, 3065.268)
52 2639.454 (2389.793, 2889.115) (2257.631, 3021.278) (2137.653, 3141.256)
53 2643.845 (2361.938, 2925.752) (2212.706, 3074.985) (2077.232, 3210.459)
54 2648.236 (2336.410, 2960.063) (2171.339, 3125.134) (2021.487, 3274.986)
55 2652.627 (2312.593, 2992.662) (2132.590, 3172.665) (1969.182, 3336.073)
56 2657.019 (2290.093, 3023.944) (2095.855, 3218.182) (1919.524, 3394.513)
57 2661.410 (2268.640, 3054.180) (2060.720, 3262.100) (1871.969, 3450.850)

and VIX, for modeling their data to forecast the future indices in conjunction with the
COVID-19 confirmed cases. Other challenges in this research are gathering, compiling,
and manipulating stock indices data to align with COVID-19 confirmed cases because of
discrepancies in reporting stock indices (5 days a week) and COVID-19 confirmed cases
(7 days a week). For the datasets considered in this research, S & P and VIX data satisfied

Patwary and Das (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1532 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1532


 (a) 

Time (Week)

M
S

C
I I

nd
ex

0 10 20 30 40 50

15
00

20
00

25
00

30
00

35
00 Train

Test
Forecast

 (b) 

Time (Week)

M
S

C
I I

nd
ex

0 10 20 30 40 50

15
00

20
00

25
00

30
00

35
00 Train

Test
Forecast

 (c) 

Time (Week)

M
S

C
I I

nd
ex

0 10 20 30 40 50

15
00

20
00

25
00

30
00

35
00 Train

Test
Forecast

Figure 10 Train series, test series, and forecast for MSCI index along with 80% (innermost), 95%
(middle), and 99% (outermost) prediction bands. (A) Using mean method; (B) using naïve method; (C)
using drift method.

Full-size DOI: 10.7717/peerjcs.1532/fig-10

Table 9 Accuracy measures (ME, mean error; RMSE, root mean squared error; MAE, mean absolute
Error; MPE, mean percent error; MAPE, mean absolute percent Error) of forecast models for different
datasets.

Data Model ME RMSE MAE MPE MAPE

S & P (Training) ARIMA(1, 1, 1) −0.340 95.428 68.961 −0.050 2.269
S & P (Test) ARIMA(1, 1, 1) 168.710 219.978 168.710 4.395 4.395
VIX (Training) ARIMA (2, 0, 1) 0.255 5.217 3.512 −1.930 11.770
VIX (Test) ARIMA (2, 0, 1) −0.428 4.386 3.365 −4.117 14.198
MSCI (Training) Mean 0.000 221.867 179.527 −1.061 8.325
MSCI (Test) Mean 450.385 452.692 450.385 16.566 16.566
MSCI (Training) Naïve 4.391 93.531 66.280 0.069 3.125
MSCI (Test) Naïve 92.930 103.535 92.930 3.396 3.396
MSCI (Training) Drift 0.000 93.428 65.626 −0.127 3.099
MSCI (Test) Drift 70.975 79.374 70.975 2.593 2.593

the assumptions for parametric forecasting methods. In contrast, MSCI data satisfied the
assumptions for the random walk forecasting method.

It has been observed that the variant integrated ARMAX of Box-Jenkins parametric
methods of forecasting for the S & P index and VIX does a good job of modeling the data.
From Tables 4, 5 and Figs. 8, 9, it has been found that the forecasted indices are close to
the original test set of data. In addition, the shortest of the three forecast intervals among
80%, 95%, and 99% contains the forecasted series, which is an indication that the adopted
methodology performed well in capturing the underlying structure in the training data in
connection with the COVID-19 confirmed cases which are further substantiated in the test
data.
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Nonstationarity data are not uncommon. Unlike S & P 500 and VIX, MSCI data showed
nonstationarity behavior. One possible reason for such behavior could be due to the nature
of the MSCI index, which spans over 23 countries throughout the world, and most likely
has more noise than any other traditional index. Nonstationary data are challenging to
model.

Nonetheless, random walk forecasting methods seem to perform a good modeling
job in capturing the underlying structure in the training set of MSCI data substantiated
by the test dataset. We have considered the mean, naïve, and drift methods of random
walk forecasting. It has been found that in all the methods the forecasted indices are
included by the 95% prediction intervals. However, for the naïve methods (see Tables
6, 7 and 8 and Fig. 10), the forecasted series is even closer to the original series and are
also contained by the shortest prediction intervals. Since no study investigated the impact
of COVID-19 infection rates on stock indices such as MSCI, no comparative analysis
has been performed.

As the three indices investigated in this study are from different parts of the world, it was
challenging to obtain uniform data as different countries have different holiday calendars
for their stock markets. Moreover, as the reporting of the COVID-19 infection data varied
from country to country significantly, it can be considered a limitation of the study.
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